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SHORT COURSE IN SPECIAL RELATIVITY

1. Spacetime

According to Maxwell’s equations, the speed c
of light in vacuum is the same in all reference
frames. Therefore c provides a fundamental link
betweem distance and time. Instead of plot-
ting time t in seconds, we can plot ct in meters.
This motivates us to consider ct to be the fourth
(or more conventionally the zeroth) component
of a four-dimensional space called spacetime. A
point (“event”) in spacetime has the coordinates
r = (ct, �r) = (ct, x, y, z); r is called a four-vector.

ct

x

y, z

world line

ct =
√
x2 + y2 + z2

FIG. 1. Light cone of a particle and its world
line, drawn in four spacetime dimensions using
a randomly chosen Lorentz frame. (To simplify
the sketch, the y and z axes are collapsed into
a single direction.) The origin of coordinates
is chosen to be the particle’s position at t = 0.
The world line’s slope d(ct)/ds (where ds2 ≡
dx2 + dy2 + dz2) everywhere must remain ≥ 1 so
that the particle never exceeds the speed of light.

Choose a random inertial (Lorentz) frame and,
at t = 0, define the space axes so that your own
position is x = y = z = 0. Then consider your
future. Since any information you create travels
at most with the speed of light, only that part
of spacetime with c2t2 > x2 + y2 + z2 can possi-
bly be affected by anything you are doing or will
do. This is your active future, lying within the
light cone sketched in Fig. 1. Your path through
that future is your world line.

Likewise, a similar cone that points downward
(not shown in the sketch) is your active past.
It contains all the events that could possibly
have affected you up to now. Apart from these
cones, what remains is your neutral region. You
are and have been unaware of any events in the
neutral region, and, in turn, they will remain
unaware of anything you are doing or will do.

If (in the absence of gravity) the universe con-
sisted of a static four-dimensional sphere in
spacetime centered on you (naturally), what
fraction of spacetime’s total volume would be ac-
tive, i.e. would lie within your active light cones?

2. Distance in spacetime

Figure 2 shows a standard layout of two Lorentz
frames S and S ′, with relative (x̂ = x̂′) velocity
equal to β0c (β0 is dimensionless with the range
−1 ≤ β0 ≤ 1).

1



y

x

S

z

y′

x′

S ′

z′

β0c

FIG. 2. Arrangement of two Lorentz frames S
and S ′ to which the usual Lorentz transforma-
tion applies. With respect to frame S, frame S ′

moves in the x̂ = x̂′ direction with speed β0c.
When the two 3D origins coincide, t ≡ t′ ≡ 0.

Suppose that a pulse of electromagnetic (em)
radiation is emitted at ct = ct′ = 0 when, ac-
cording to Fig. 2, the 3D origins x = y = z = 0
and x′ = y′ = z′ = 0 coincide. In either frame,
Maxwell’s equations force this pulse to be a
spherical bubble expanding from the 3D origin
with the speed of light:

x2 + y2 + z2 = c2t2

x′2 + y′2 + z′2 = c2t′2 .

For this em bubble, it is definitely true that

c2t2 − x2 − y2 − z2 = c2t′2 − x′2 − y′2 − z′2 (1)

Keeping this result in mind, we consider how to
define the length of a spacetime four-vector r
that extends from the 4D origin to (ct, x, y, z).
If we hadn’t already analyzed the em bubble,
perhaps our first thought would be to proceed
by analogy to the length2 of a vector in three
spatial dimensions:

�r · �r = x2 + y2 + z2

r · r =? c2t2 + �r · �r .

But we want the length of a spacetime four-
vector to remain invariant to the choice of
Lorentz frame (much as a 3D vector’s length is
invariant to the choice of 3D coordinate orienta-
tion). Accepting this requirement, we are forced
by Eq. (1) to change the sign of the last term:

r · r = c2t2 − �r · �r (2)

By extension, the inner product of two four-
vectors rA and rB is

rA · rB = ctA ctB − xAxB − yAyB − zAzB (3)

[Some authors (i.e. Griffiths) instead define an
inner product of opposite sign, but most authors
and physicists use Eq. (3)’s convention.]

Obviously from Eq. (2), r · r can be negative
(strange for a length2!) as well as positive. So
can the interval2 ∆r ·∆r ≡ (rA − rB) · (rA − rB)
between two spacetime events rA and rB . Such
intervals are called

timelike if ∆r ·∆r > 0 (c2(∆t)2 > ∆�r ·∆�r)

lightlike if ∆r ·∆r = 0 (c2(∆t)2 = ∆�r ·∆�r)

spacelike if ∆r ·∆r < 0 (c2(∆t)2 < ∆�r ·∆�r) .

Because the inner product is invariant to the
choice of Lorentz frame, so is the time-, light-, or
space-likeness of the interval between any pair of
events.

Except for effects of quantum entanglement,
pairs of events can be causally connected only if
the interval between them is timelike (within the
light cone) or lightlike (on the light cone). Event
A can’t cause event B if the two events are sep-
arated by a spacelike interval; on the contrary, a
Lorentz frame could be found in which A and B
are simultaneous, or, worse yet, occur in reverse
order!

3. Infinitesimal rotation in space

We can understand more about transformations
in spacetime by reviewing the properties of or-
dinary space rotations. Figure 3 sketches the
geometry appropriate for a passive (coordinate-
system) rotation in 2D space.

In this section we assume that the rotation is
infinitesimal (φ � 1). Then, from the figure,

x′ = x+ φy

y′ = −φx+ y ,

or, in matrix notation,

(
x′

y′

)
=

(
1 φ
−φ 1

) (
x
y

)
(4)
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FIG. 3. Passive rotation in two Euclidean di-
mensions. Point A, which is not actively ro-
tated, may be expressed either as (x, y) or as
(x′, y′). Relative to the unprimed frame, the
primed frame is rotated by the positive (coun-
terclockwise) angle φ. 2D rotations preserve
x′2 + y′2 = x2 + y2.

The distance2 between point A and the origin is

�r · �r = x2 + y2

�r ′ · �r ′ = x′2 + y′2

= (x+ φy)2 + (y − φx)2

= x2 + y2 + 2φxy − 2φxy + φ2(x2 + y2)

= (x2 + y2)(1 + φ2) .

As expected, this distance is the same in the
primed and unprimed coordinate systems, pro-
vided that we are willing to ignore φ2 compared
to 1. This is reasonable, since φ2 is second order
in the infinitesimal quantity φ. If we were con-
cerned about this term, we could rewrite Eq. (4)
as (

x′

y′

)
=

1√
1 + φ2

(
1 φ
−φ 1

) (
x
y

)
(5)

Then the distance between point A and the
origin would be exactly the same in the two
systems.

3. Infinitesimal transformation in space-
time

Figure 4 sketches the geometry appropriate for
a passive (coordinate-system) transformation in
2D spacetime. There r = (ct, x) and r′ = (ct′, x′)
are the coordinates of event A as viewed in S
and S ′, respectively. Temporarily, we denote
the transformation parameter by β0. In this
section we assume that the transformation is
infinitesimal (β0 � 1). Then, from the figure,

ct

x

A

ct′

x′

β0

FIG. 4. Infinitesimal passive transformation in
two spacetime dimensions. Event A, which is
not actively transformed, may be expressed ei-
ther as (ct, x) or as (ct′, x′). Relative to the
unprimed frame, the primed frame is arranged
as in Fig. 2. 2D Lorentz transformations pre-
serve ct′2 − x′2 = ct2 − x2.

ct′ = ct− β0x

x′ = −β0ct+ x ,

or, in matrix notation,

(
ct′

x′

)
=

(
1 −β0

−β0 1

) (
ct
x

)
(6)

Using Eq. (2), the spacetime interval2 between
event A and the origin is

r · r = c2t2 − x2

r′ · r′ = c2t′2 − x′2

= (ct− β0x)2 − (x− β0ct)2

= c2t2 − x2 − 2β0ctx+ 2β0ctx −
− β2

0(c
2t2 − x2)

= (c2t2 − x2)(1− β2
0) .

Why did we draw Fig. 4 in this peculiar way?
We did so because we needed a minus sign in
the top right-hand element of the 2 × 2 matrix
in Eq. (6). With the help of this minus sign, we
were able to force r · r to be equal to r′ · r′, pro-
vided, again, that we are willing to ignore a term
that is second order in the infinitesimal param-
eter β0. If we were concerned about this term,
we could rewrite Eq. (6) as

(
ct′

x′

)
=

1√
1− β2

0

(
1 −β0

−β0 1

) (
ct
x

)
(7)
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Then the interval between event A and the origin
would be exactly the same in the two systems.

When −β0x is ignored with respect to ct in
Eq. (6), we recover the Galilei transformation
that you used in high school to solve distance =
rate × time problems:

t′ ≈ t

x′ = x− β0ct = x− V t ,
(8)

where V is the relative velocity between two
slow coordinate systems (e.g. trains). Requir-
ing agreement with the Galilei transformation in
this limit forces β0 to be equal to V/c – there is
no other viable choice.

4. Finite rotation in space

For ordinary rotations in 2D Euclidean space,
when the rotation angle φ is not necessarily
� 1, Eq. (4) takes the familiar form(

x′

y′

)
=

(
cosφ sinφ
− sinφ cosφ

) (
x
y

)
(9)

Why do we choose the functions cosφ and sinφ?
Most directly, we apply trigonometry to Fig. 3.
However, we could merely have searched for two
functions C(φ) and S(φ) which approach unity
and φ, respectively, as φ → 0 – and which sat-
isfy the property C2(φ) + S2(φ) = 1 for any φ.
This property guarantees that

�r · �r = �r ′ · �r ′

for any φ, preserving the lengths of vectors
after any coordinate rotation. The choices
C(φ) = cosφ and S(φ) = sinφ satisfy those
requirements.

5. Finite transformation in spacetime

For infinitesimal spacetime transformations, we
used the transformation parameter β0 = V/c to
agree with Galilei. Now, when the spacetime
transformation is no longer infinitesimal, we re-
examine this choice.

What properties should the transformation pa-
rameter have? For rotations in Euclidean space,
the accepted parameter is the rotation angle φ.

It has the property of being additive: two succes-
sive rotations about the same axis by angles φ1

and φ2 are equivalent to one rotation by φ1+φ2.
In spacetime, it’s clear that β cannot be addi-
tive; if it were, a sequence of transformations
each with βi < 1 would yield βtot > 1, exceeding
the speed of light.

We shall call the additive parameter for space-
time transformations η, the boost. So far, all we
know about η is that it is a function of β which
approaches β in the slow (β → 0) limit.

By analogy with section 4, we generalize Eq. (6)
to finite spacetime transformations:

(
ct′

x′

)
=

(
C(η0) −S(η0)
−S(η0) C(η0)

) (
ct
x

)
(10)

Again C(η0) and S(η0) are two (as yet unspeci-
fied) functions of the (as yet unspecified) trans-
formation parameter η0. Using Eq. (2) as we
did in section 3, the spacetime interval2 between
event A and the origin is

r · r = c2t2 − x2

r′ · r′ = c2t′2 − x′2

= (ctC − xS)2 − (xC − ctS)2

= c2t2C2 − x2C2 − 2ctxCS +

+ 2ctxCS − (c2t2S2 − x2S2)

= (c2t2 − x2)
(
C2(η0)− S2(η0)

)
.

Evidently, to preserve the spacetime interval2 af-
ter a finite transformation, the matrix elements
C(η0) and S(η0) must satisfy

C2(η0)− S2(η0) = 1 .

When η0 � 1, we know that η0 approaches β0.
Comparing Eq. (10) with Eq. (6), it’s clear as
well that S(η0) must approach η0 and and C(η0)
must approach unity in this limit.

The functions that satisfy these requirements are

C(η0) = cosh η0 ≡ eη0 + e−η0

2

S(η0) = sinh η0 ≡ eη0 − e−η0

2

(11)
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where cosh and sinh are the hyperbolic cosine
and hyperbolic sine, respectively. From their def-
initions, it’s clear that C2 − S2 = 1. Expanding

eη
0 ≈ 1 + η0 + 1

2η
2
0 + . . . ,

it’s easy to confirm that sinh η0 approaches η0

and cosh η0 approaches unity when η0 � 1, as we
require. Substituting these hyperbolic functions
in Eq. (10), the finite spacetime transforma-
tion begins to resemble the ordinary Euclidean
rotation in Eq. (9):(

ct′

x′

)
=

(
cosh η0 − sinh η0

− sinh η0 cosh η0

) (
ct
x

)
(12)

To learn more about the boost parameter η0,
we rearrange this equation using the hyperbolic
tangent

tanh η0 ≡ sinh η0

cosh η0
=

eη0 − e−η0

eη0 + e−η0(
ct′

x′

)
= cosh η0

(
1 − tanh η0

− tanh η0 1

)(
ct
x

)

Using the identity

cosh η0 =
√
cosh2 η0

=

√
cosh2 η0

cosh2 η0 − sinh2 η0

=

√
1

1− tanh2 η0

,

(13)

Eq. (12) takes the form

(
ct′

x′

)
=

√
1

1− tanh2 η0

×

×
(

1 − tanh η0

− tanh η0 1

) (
ct
x

)
.

Comparing this with Eq. (7), we identify

β0 = tanh η0 or

η0 = tanh−1 β0 = tanh−1
(V
c

) (14)

We have learned to equate the boost η0 – the ad-
ditive parameter for spacetime transformations

– to the arc hyperbolic tangent of β0 ≡ V/c.
Though we can add many boosts to make |η0|
arbitrarily large, |V | never exceeds c because
| tanh η0| never exceeds unity.

6. Lorentz transformation

Equations (12) and (14) together define the
Lorentz transformation in its basic form. The
matrix elements in Eq. (12) are functions of the
fundamental additive parameter η0 defined in
Eq. (14); these functions show an intimate rela-
tion to the circular functions used for ordinary
rotations in Euclidean space.

For solving problems involving only one space-
time transformation, without any acceleration, a
more convenient form for the Lorentz transfor-
mation is(

ct′

x′

)
=

(
γ0 −γ0β0

−γ0β0 γ0

) (
ct
x

)
(15)

where, using Eq. (13),

γ0 ≡ cosh η0 =
1√

1− β2
0

(16)

In many introductory texts, which seek to avoid
matrices and Greek letters, Eq. (15) is written

t′ =
1√

1− V 2

c2

(
t− V

c2
x
)

x′ =
1√

1− V 2

c2

(
x− V t

) (17)

Equations (12), (15), and (17) equivalently trans-
form ct and x from inertial frame S to inertial
frame S ′, where S ′ moves in the x̂ = x̂′ direc-
tion relative to S with velocity V = β0c as in
Fig. 2. How would we transform instead from
S ′ to S? The only feature that distinguishes S ′

from S is the fact that β0c is the x̂ = x̂′ veloc-
ity of S ′ relative to S; conversely, the velocity of
S relative to S ′ is −β0c. Therefore the inverse
Lorentz transformation is the same as the direct
transformation with the sign of β0 reversed:(

ct
x

)
=

(
γ0 +γ0β0

+γ0β0 γ0

) (
ct′

x′

)
(18)

A bit of algebra will confirm that the direct
Lorentz transformation followed by its inverse
leaves us back where we started:
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(
γ0 γ0β0

γ0β0 γ0

) (
γ0 −γ0β0

−γ0β0 γ0

)
=

(
1 0
0 1

)
.

7. Lorentz transformation in 4 dimensions

When the velocity �β0c of S ′ relative to S is in
the x̂ = x̂′ direction, as in Fig. 2, the Lorentz
transformation doesn’t change the y and z coor-
dinates:


ct′

x′

y′

z′


 =




γ0 −γ0β0 0 0
−γ0β0 γ0 0 0

0 0 1 0
0 0 0 1







ct
x
y
z



(19)

(Up to now we omitted the 3rd and 4th dimen-
sions to save space.) This can be written in
matrix notation as

r′ = Λr (20)

where r′ and r are the 4 × 1 column vectors
and Λ is the 4× 4 transformation matrix. More
generally, if �β0 is in an arbitrary direction n̂,
Eq. (20) becomes

r′ = Λ−1
R ΛΛR r (21)

where ΛR is a matrix that performs the 3D spa-
tial rotation which transforms the n̂ direction
into the x̂ direction. In general, ΛR takes the
form

ΛR =



1 0 0 0
0 λxx λxy λxz

0 λyx λyy λyz

0 λzx λzy λzz


 ,

and has the orthogonality property(
Λ−1

R

)
ij
=

(
ΛR

)
ji
.

8. Time dilation

Figure 5 shows a clock, attached to S ′, that ticks
at times t′1 and t′2. As observed in S, which is
not at rest with respect to the clock, what time
interval t2 − t1 separates these ticks?

clock fixed in S ′

y

x

S
y′

x′

S ′
β0c

FIG. 5. Observing time dilation. Frames S and
S ′ are arranged as in Fig. 2. A clock is fixed to
S ′, which is the proper frame because two space-
time events (clock ticks) whose time separation is
of interest occur in the same place in that frame.
In any other Lorentz frame, the time interval be-
tween these ticks can be measured with a fine
grid of clocks, rulers, and data loggers, avoiding
any observational errors due to signal propaga-
tion. This time interval is larger (dilated) than
the one observed in the proper frame.

Applying the inverse Lorentz transformation,

ct2 = γ0ct
′
2 + γ0β0x

′
2

ct1 = γ0ct
′
1 + γ0β0x

′
1 .

Now x′
2 = x′

1 because, as seen in S ′, the clock
is always in the same position. Subtracting the
second equation from the first,

c(t2 − t1) = γ0c(t′2 − t′1)
∆t = γ0∆t′ ≡ γ0∆τ

(22)

Since γ0 is always ≥ 1, the time interval between
ticks is longer in frame S, which is moving with
respect to the unique frame S ′, where the ticks
occur at the same place. Since S ′ is unique,
in Eq. (22) we assigned a unique name ∆τ to
the time interval ∆t′ observed in this frame. S ′

is called the proper frame and τ is called the
proper time.

At the expense of slightly more algebra, the
same result also could be obtained from the
direct Lorentz transformation.

9. Space contraction

Figure 6 shows a rod attached to S ′. When mea-
sured at any time in that frame, its ends are at
x′

1 and x′
2. As observed at the same time t1 = t2

in S, which is not at rest with respect to the rod,
what distance x2 − x1 separates the rod ends?
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FIG. 6. Observing space contraction. Frames S
and S ′ are arranged as in Fig. 2. A rod is fixed
to S ′. In any other Lorentz frame, the positions
of these ends can be measured simultaneously
using a fine grid of clocks, rulers, and data log-
gers, avoiding any observational errors due to
signal propagation. There the distance between
the ends is smaller (contracted) than in S ′.

Applying the direct Lorentz transformation,

x′
2 = γ0x2 − γ0β0ct2

x′
1 = γ0x1 − γ0β0ct1 .

Using the fact that t2 = t1, and subtracting the
second equation from the first,

x′
2 − x′

1 = γ0(x2 − x1)

∆x =
∆x′

γ0

(23)

Since γ0 is always ≥ 1, the rod appears shorter
in frame S, which is moving with respect to the
unique frame S ′ to which the rod is attached.

10. Velocity addition

This classic problem is outlined in the caption
to Fig. 7. Clearly two velocities cannot simply
add – otherwise the sum could exceed the veloc-
ity of light. What is the Einstein law of velocity
addition?

The problem is solved most elegantly by use of
the boost parameter η, because it is additive:

η′′ = η + η′

β′′ = tanh η′′

= tanh (η + η′) .

y

x

S
y′

x′

S ′
βc

y′

x′

S ′
y′′

x′′

S ′′
β′c

y

x

S
y′′

x′′

S ′′
β′′c

FIG. 7. Arrangement for adding relativistic ve-
locities sharing a common direction. Frame S ′

moves in the x̂ = x̂′ direction at velocity βc with
respect to frame S. Frame S ′′ moves in the
x̂′ = x̂′′ direction at velocity β′c with respect to
frame S ′. With what velocity β′′c does frame
S ′′ move with respect to S?
The identity

tanh (a+ b) =
tanh a+ tanh b
1 + tanh a tanh b

can be taken on faith, in analogy to the more
familiar

tan (a+ b) =
tan a+ tan b
1− tan a tan b

,

or it can be derived in a few lines starting from
the definition of the hyperbolic tangent. Using
this identity,

β′′ =
tanh η + tanh η′

1 + tanh η tanh η′

=
β + β′

1 + ββ′ .
(24)

The combined β′′ never exceeds unity.

11. Human constraints on space travel

Assume that an astronaut is willing to be accel-
erated at no more than 1 g, and to age no more
than 40 years during the voyage. What maxi-
mum velocity can be achieved? How far will the
astronaut travel, and how much time will have
elapsed on earth?
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The full voyage consists of τ10 ≡ 10 years with
acceleration a′x = +g, 20 years with a′x = −g,
and 10 years with a′x = +g. We need consider
only the first leg. To answer the questions posed,
we’ll double the first-leg distance and quadruple
the first-leg time.

Because the astronaut is accelerating, his/her
rest frame is not inertial. However, to analyze
his/her motion using the Lorentz transforma-
tion, we need an inertial frame. Accordingly we
define a comoving frame S ′ which at a certain
moment is at rest with respect to the astro-
naut but which is not accelerating. Then, with
respect to the comoving frame, the astronaut
moves with velocity βrelc, where βrel = 0 at a
certain moment of astronaut time τ .

Next allow an infinitesimal unit dτ of astro-
naut time to elapse. As seen in the comoving
frame S ′, the elapsed time dt′ is the same as
dτ because the two frames are still moving only
infinitesimally slowly (βrel � 1) with respect to
each other. Likewise, because βrel � 1, the ac-
celeration felt by the astronaut is the same as
the acceleration observed in S ′. Therefore, after
astronaut time interval dτ has elapsed, the as-
tronaut appears in S ′ to be moving with relative
velocity c dβrel = g dτ .

To sum up these increments, we need to use the
boost parameter η, which is additive. As seen
in Earth frame S, each incremental boost dη,
calculated in a different comoving frame, will
add linearly to yield the total boost. Fortu-
nately, when βrel � 1, dη = dβrel. Therefore our
working equation is

dη =
g

c
dτ .

Integrating,

ηmax =
∫ τ10

0

g

c
dτ

=
g

c
τ10

= 10.34
βmax = tanh ηmax

= 1− (2.09× 10−9) .

The distance covered is obtained by integrat-
ing astronaut displacements as observed in the
Earth’s frame:

dx = βc dt

= (tanh η)c γdτ (time dilation)
= c (tanh η cosh η) dτ
= c (sinh η) dτ

∆x = (2 legs)×
∫ τ10

0

c (sinh η) dτ

= 2c
∫ τ10

0

sinh
(gτ
c

)
dτ

= 2
c2

g

(
cosh

(g
c
τ10

) − 1
)

= 2.84× 1020 m
= 29, 900 light yr .

Considering that the universe has been flying
apart at nearly the speed of light for ≈14 billion
years since the Big Bang, it’s clear that only an
infintesimal fraction of it can be explored within
an astronaut’s lifetime.

Finally, the time elapsed on earth is:

dt = γ dτ (time dilation)
= cosh η dτ

∆t = (4 legs)×
∫ τ10

0

(cosh η) dτ

= 4
∫ τ10

0

cosh
(gτ
c

)
dτ

= 4
c

g
sinh

(g
c
τ10

)
= 1.89× 1012 sec
= 59, 850 yr (compare 40 yr!) .

This last result is often called the “twin para-
dox” because the earthbound twin ages more
rapidly (1500× more rapidly in this example). It
isn’t a paradox, because the astronaut twin, who
is accelerating, is fundamentally different from
the earthbound twin, who isn’t.

12. Four-momentum

In Eq. (3) we saw that the inner product rA · rB

of two spacetime four-vectors remains the same
8



after a Lorentz transformation. It is called a
Lorentz invariant.

An interval of proper time dτ and a particle’s
rest-frame mass m are also Lorentz invariants.
This is a trivial statement: to determine dτ or
m, an observer in an arbitrary inertial frame
must transform to a different frame (the proper
frame to get dτ , or the particle’s rest frame
to get m). If all observers in all their indi-
vidual inertial frames are able to perform these
transformations, they will all agree on dτ and m.

The four-momentum p is defined by

p ≡ m
dr

dτ

=
(
mc

dt

dτ
,m

dx

dτ
,m

dy

dτ
,m

dz

dτ

)
dt = γ dτ (time dilation)

p =
(
γmc, γm

dx

dt
, γm

dy

dt
, γm

dz

dt

)
=

(
γmc, γm�v

)
≡ (E

c
, �p

)
.

(25)

Note that Eq. (25) defines the total energy E
and the relativistic momentum �p:

p0 = γmc ≡ E

c

(px, py, pz) = γm�v ≡ �p .
(26)

Because m and dτ are Lorentz invariants, the
four-momentum p transforms in the same way
as the spacetime coordinate r:

(
E′/c
p′x

)
=

(
γ0 −γ0β0

−γ0β0 γ0

) (
E/c
px

)
(27)

Therefore p is also a four-vector.

Correspondingly, the length2 p · p of the four-
momentum is a Lorentz invariant:

p · p = (γmc, γm�v) · (γmc, γm�v)

= γ2m2(c2 − v2)

= γ2m2c2(1− β2)

= m2c2 .

(This result can also be obtained by evaluating
p · p in the particle’s rest frame, where γ = 1
and �v = 0.) Thus the basic equation for solving
relativistic kinematics problems is

p · p = E2

c2
− �p · �p = m2c2 (28)

We’ve called E the “total energy”, but we
haven’t yet related it to any other energy. Mak-
ing a Taylor series expansion,

E = γmc2

=
mc2√
1− v2

c2

= mc2
(
1 + 1

2

v2

c2
+ . . .

)
= mc2 + 1

2mv2 + . . .

≡ mc2 + T .

(29)

The total energy E is equal to the rest mass
energy mc2 plus the relativistic kinetic energy
T ≡ E −mc2. T is not equal to 1

2mv2 – this is
true only in the nonrelativistic limit, when the
extra terms in Eq. (29) can be dropped.

Because c2 ≈ (3 × 108 m)2 is large, we recog-
nize the possibility of converting mass to lots of
energy.

13. Compton scattering

To illustrate the power of Eq. (28) for solving
problems in relativistic kinematics, we consider
the scattering of a quantum of light (a mass-
less photon) by an electron at rest. Following
A.H. Compton, we seek a relation between the
photon’s scattering angle θ and its loss of energy
as a result of the scatter.

9



p
q x

x

θ

p′

q′

FIG. 8. Geometry for photon-electron (“Comp-
ton”) scattering. The incident and scattered
photon four-momenta are denoted by q and q′,
respectively, and the target- and recoil-electron
four-momenta are denoted by p and p′. The in-
cident photon energy is known and the scattered
photon energy is measured, as is the photon’s
scattering angle θ. The target electron is as-
sumed to be (essentially) at rest; the recoil
electron is unobserved.

The four-momenta of the participants in this
reaction are defined in Fig. 8. Because the inci-
dent photon is travelling in the x direction, its
four-momentum can be written q = (q0, qx, 0, 0).
Since photons are massless, q · q = m2c2 = 0.
Therefore qx = q0. Defining the y axis so that
the scattering takes place in the xy plane, for the
incident and scattered photon four-momenta and
the target electron four-momentum we can write

q = (q0, q0, 0, 0)
q′ = (q′0, q

′
0 cos θ, q

′
0 sin θ, 0)

p = (mc, 0, 0, 0) ,

where m is the electron’s rest mass.

In any scattering process, due to invariance of
physical laws with respect to coordinate dis-
placements both in position and in time, both
(relativistic) momentum and (total) energy are
conserved. (Recall that kinetic energy is con-
served only in elastic collisions.) Energy and
momentum conservation can be expressed as
four equations

q0 + p0 = q′0 + p′0
qx + px = q′x + p′x
qy + py = q′y + p′y
qz + pz = q′z + p′z

or as a single four-vector equation

q + p = q′ + p′ .

The latter is more elegant. Rearranging and
squaring it,

p′ = p+ q − q′

m2c2 = [p+ (q − q′)] · [p+ (q − q′)]

= m2c2 + 2p · (q − q′) + (q − q′) · (q − q′)
0 = 2p · (q − q′) + q · q + q′ · q′ − 2q · q′
= 2p · (q − q′) + 0 + 0− 2q · q′
= p · (q − q′)− q · q′
= mc(q0 − q′0)− q0q

′
0 + q0q

′
0 cos θ

=
q0 − q′0
q0q′0

− 1− cos θ
mc

=
1
q′0

− 1
q0

− 1− cos θ
mc

.

Usually this result is multiplied by Planck’s con-
stant h, with the photon wavelength λ equal to
h/q0. Then

λ′ − λ = λC(1− cos θ) (30)

where λC is the Compton wavelength of the
electron, equal to

λC =
h

mc
= 2π × 386× 10−15 m.

Planck’s constant is

h = 2π × 6.58× 10−16 eV sec.

14. Propulsion constraints on space travel

In section 11 we found that an astronaut who
is willing to travel for 40 years while experienc-
ing an acceleration of 1 g can cover only a paltry
29,900 light years (and back). Seems like a mod-
est goal – but are we able to design a rocket
engine that would accomplish even that much?

Again we work in a comoving frame (Fig. 9), in-
stantaneously at rest relative to the rocket at
τ = τ0. In an infinitesimal proper time inter-
val dτ , the rocket ejects what we’ll call “particle

10



#1”, with energy dE1 and velocity �β1c rela-
tive to the comoving frame. The rocket loses
an amount of mass dm (defined positive) and
recoils with infinitesimal velocity d�β.

τ = τ0 : m

τ = τ0 + dτ :

m− dm
d�β�β1

#1

dE1

FIG. 9. Analysis of spacecraft propulsion in
the comoving frame, an inertial frame instanta-
neously at rest with respect to the spacecraft at
the spacecraft’s proper time τ0. At τ = τ0 in
this frame, the spacecraft appears to be at rest,
though it is accelerating. At τ = τ0 + dτ , due to
ejection of a (positive) infinitesimal mass dm at

relative velocity �β1, the spacecraft has acquired
a velocity d�β. Because d�β is � 1, the space-
craft’s proper time τ is still equivalent to the
time measured in the comoving frame.

As observed in the comoving frame, define the
rocket four-momentum to be P0 at τ = τ0,
and P ′ at time τ = τ0 + dτ ; define the four-
momentum of particle #1 to be p1 at the later
time. Then

P0 = (mc,�0)

P ′ ≈ (
(m− dm)c+ 1

2mc|d�β|2,mc d�β
)

p1 =
(dE1

c
, �β1

dE1

c

)
.

In assigning the components of p1, we made use
of the relation �p = �βE/c, which follows from the
definition of the four-momentum. In assigning
the components of P ′, we took advantage of the
fact that, in the comoving frame, the rocket is
still nonrelativistic at τ = τ0 + dτ , so that E is
approximately equal to 1

2mv2 plus the rest mass
energy.

If we assume that the rocket engine is perfectly
efficient, so that no heat energy is radiated in
random directions, energy and momentum con-
servation require that

P0 = p1 + P ′ .

We separate this equation into a timelike part

mc =
dE1

c
+ (m− dm)c+ 1

2mc|d�β|2

and a spacelike part

�0 = �β1
dE1

c
+mcd�β .

In the timelike equation the mc terms cancel,
and the last term is negligible because it is
second order in the small quantity dβ. This
equation reduces to dE1 = c2dm. Substituting
for dE1 in the spacelike equation, and taking
account of the fact that �β1 and d�β point in
opposite directions, we obtain

|d�β| = |�β1| |dm|
m

.

When a second particle is ejected, we set up a
different comoving frame and compute an analo-
gous |d�β|. As in section 11, our difficulty is that
the two |d�β|’s don’t add. What do add are the
two dη’s; fortunately, since the rocket moves non-
relativistically relative to the comoving frame, we
can easily equate dη ≈ |d�β|. Therefore, summing
over the emission of many particles,

ηfinal − (η0 ≡ 0) =
∫ mfinal

m0

|�β1| |dm|
m

ηfinal = |�β1| ln m0

mfinal
.

(31)

This is the classic rocket equation: the achievable
Lorentz boost increases linearly with the relative
exhaust velocity β1c, but only logarithmically
with the ratio of initial to final rocket masses.

Chemical rocket engines achieve a maximum
|�β1| ≈ 4 × 103 m/sec/c ≈ 1.33 × 10−5. To
achieve a boost ηfinal = 10.34 as in section 11,
we would require

ln
m0

mfinal
= 7.8× 105 ,

yielding a mass ratio that is beyond calculator
range. Evidently chemical rockets (the only type
used up to now) will never suffice.
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Relativistic rocket engines emit particles at β1 ≈
1. If they were perfectly efficient,

ln
m0

mfinal
= 10.34

m0 = 3.1× 104mfinal .

If the rocket were to carry a payload that in-
cludes an astronaut, mfinal > 10 T would be
needed to provide life support. Then the initial
rocket mass would be

m0 > 3.1× 105 T ,

heavier than an aircraft carrier. Note that
Eq. (31) becomes

ηfinal = ε |�β1| ln m0

mfinal

if the efficiency ε of the engine is less than unity.

Unfortunately, present relativistic rocket engine
concepts are grossly inefficient (ε � 1), and leave
most of their fuel on board so that m0/mfinal

cannot be  1. A simple example is a laser
powered by batteries. Much engineering remains
to be accomplished, even for the modest goal of
propelling astronauts through only an infinitesi-
mal fraction of the universe.

15. The four-gradient

So far we have discussed two four-vectors: r ≡
(ct, �r) and p ≡ (E/c, �p), where E ≡ γmc2 and
�p ≡ γm�v. We’ll briefly mention some other
four-vectors here and in sections 16 and 17.

Using standard methods of differential calculus,
starting from the Lorentz transformation law for
r, it is straightforward to show that


∂
c∂t′

− ∂
∂x′

− ∂
∂y′

− ∂
∂z′


 =




γ0 −γ0β0 0 0
−γ0β0 γ0 0 0

0 0 1 0
0 0 0 1







∂
c∂t

− ∂
∂x

− ∂
∂y

− ∂
∂z




That is, the four-gradient operator

∂ ≡




∂
c∂t

− ∂
∂x

− ∂
∂y

− ∂
∂z


 ≡ ( ∂

c∂t
,−�∇)

(32)

transforms like a four-vector as well. (Note the
minus sign in front of �∇; because of it, ∂ · r = 4,
not −2.)
The em wave equation operator

∂ · ∂ ≡ ∂2

c2∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2

≡ ∂2

c2∂t2
−∇2

(33)

is the inner product of two four-vectors, and
therefore is a Lorentz invariant.

16. Electromagnetic four-vectors

The continuity equation that enforces charge
conservation is often written

∂ρ

∂t
+ �∇ · �J = 0 (34)

where ρ is the volume charge density (Coul/m3)
and �J is the volume current density (Amp/m2).
Equation (34) is equivalent to

∂ · J = 0 ,

where
J ≡ (cρ, �J) (35)

is the four-current density. Because ∂ is a four-
vector and ∂ · J is a Lorentz invariant, J must
transform like ∂ and therefore must also be a
four-vector.

Both of the sourceless Maxwell equations

�∇ · �B = 0

�∇× �E = −∂ �B

∂t

(36)

are implicit in the relations

�B ≡ �∇× �A

�E ≡ −�∇Φ− ∂ �A

∂t
,

(37)

where Φ is the scalar potential and �A is the vec-
tor potential. All potentials have some freedom
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in their definition; for example, the potential en-
ergy associated with a mechanical problem can
be modified by an additive constant without
changing the motion. The freedom enjoyed by
the electromagnetic potentials is called gauge in-
variance. It turns out that, because of gauge
invariance, we are free to impose upon Φ and �A
the Lorentz gauge condition

1
c2

∂Φ
∂t

+ �∇ · �A = 0 (38)

Defining the four-potential

A ≡ (
Φ
c
, �A) , (39)

Eq. (38) can be rewritten

∂ ·A = 0 .

Because ∂ · A is a Lorentz invariant, and ∂ is a
four-vector, the four-potential A must also be a
four-vector.

When the Lorentz gauge condition is imposed,
it turns out that both of the sourceful Maxwell
equations

∇ · �E =
ρ

ε0

∇× �B = µ0
�J + ε0µ0

∂ �E

∂t

(40)

can be rewritten as the single four-vector equa-
tion

(∂ · ∂)A = µ0J (41)

That is, the em wave equation operator acts
upon the four-potential A to yield the four-
current J (×µ0 in SI units). Since the two
sourceless Maxwell equations are implicit in the
definition of A, Eq. (41) carries as much infor-
mation as all four of Maxwell’s!

Knowing how A transforms and how the electro-
magnetic fields are derived from it, with some
algebra we can deduce how �E and �B themselves
transform. The result is:

�E ′
⊥ = γ0( �E⊥ + �β0 × c �B⊥)

c �B ′
⊥ = γ0(c �B⊥ − �β0 × �E⊥)

E′
‖ = E‖

cB′
‖ = cB‖ ,

(42)

where “‖” refers to the coordinate β̂0 along
which S ′ is moving relative to S (= x̂ in ear-
lier examples), and “⊥” refers to any direction
perpendicular to that coordinate.

17. The wave four-vector

Suppose that you run toward me; at a certain
time you begin to emit waves (of any kind).
By the time we collide, I will have felt all N
wave maxima that you emitted. Therefore we
both must agree on the accumulated phase 2πN
of that wave; that phase must be a Lorentz
invariant.

A plane wave travelling in the x̂ direction can be
considered to be a function of ωt − kxx, where
ω is the wave’s angular frequency and kx is the
x̂ component of its wave vector �k. The wave’s
phase velocity vph is

vph =
ω

|�k|
. (43)

More generally, for an arbitrary direction of
propagation k̂, the wave’s phase is

ωt− �k · �r ≡ k · r , (44)

where the wave four-vector k is defined as

k ≡ (
ω

c
,�k) . (45)

Since the phase is a Lorentz invariant and r is a
four-vector, k must also be a four-vector.

18. Relativistic Doppler shift

Figure 10 shows a wave source at rest in S ′ and
an observer at rest in S. What relates the angu-
lar frequencies ω′ and ω with which the wave is
emitted and observed?

Applying the Lorentz transformation to the ze-
roth component of the wave four-vector k,

ω′

c
= γ0

ω

c
− γ0β0kx . (46)
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y′

S ′
β0csource

y

x, x′

S

θ

observer

FIG. 10. Geometry for analysis of relativistic
Doppler shift. Lab frame S and source frame
S ′ are arranged as in Fig. 2. As detected by
an observer at rest at the origin of lab frame S,
the wave has angular frequency ω, phase veloc-
ity βphc, and angle θ with respect to the x̂ = x̂′

direction.

Let the phase velocity of the wave as observed
in S be βphc (βph = 1 for a light wave). From
Eq. (43),

|�k| = ω

vph
=

ω

βphc

kx =
ω

βphc
cos θ ,

where θ is the wave’s angle with respect to the
direction of S’s motion relative to S. Plugging
kx into Eq. (46),

ω′

c
= γ0

ω

c
− γ0β0

ω

βphc

ω =
ω′

γ0

(
1− β0

βph
cos θ

) .
(47)

Equation (47) describes the relativistic Doppler
shift.

A singularity occurs when

cos θ =
βph

β0
=

vph

V

(obviously possible only when V > vph). When
V describes a speedboat and vph describes a
water-surface wave, this singularity is called a
bow wave; when V describes a jet and vph

describes a sound wave, it is called a sonic boom.

FIG. 11. Sonic boom.

When V describes a relativistic particle trav-
elling through transparent material and Vph

describes light propagating through that same
material, the singularity is called Cherenkov ra-
diation.

As noted above, when the wave is a light wave
propagating in vacuum, βph = 1. In that special
case, Eq. (47) becomes

ω =
ω′

γ0(1− β0 cos θ)
.

Further, if the light wave is approaching or re-
ceding head-on,

ωapproach
recede =

ω′

γ0(1∓ β0)

=

√
1± β0

1∓ β0
ω′ .

Alternatively, if the light wave is incident from
the zenith (cos θ = 0), where nonrelativistically
there would be no Doppler shift,

ω =
ω′

γ0
(ordinary time dilation).
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Nonrelativistically (β0 � 1),

ω =
ω′(

1− V
vph

cos θ
) .

This last equation (sometimes further restricted
to θ = 0 or π) is the Doppler formula found in
freshman texts.

19. Aberration

An analysis similar to that for the relativistic
Doppler shift yields the relativistic relations for
aberration of a wave

tan θ′ =
sin θ

γ0(cos θ − β0βph)
, (48)

and of a particle

tan θ′ =
sin θ

γ0(cos θ − β0/β)
, (49)

where, for the particle, βc is its laboratory ve-
locity. Again, θ is the angle (relative to �β0) of
the wave or particle as observed in the lab frame
S, and θ′ is the same angle as observed in the
source frame S ′.

20. Covariant notation

So far, we have chosen to use an “intuitive” nota-
tion for the components of common four-vectors.
For example, our notation for the spacetime and
energy-momentum four-vectors has been

r ≡ (ct, �r) ≡ (ct, x, y, z)

p ≡ (E
c , �p) ≡ (E

c , px, py, pz) .

This choice has served us well– it constantly has
reminded us of the physical meaning of each four-
vector component. Now we venture beyond this
“intuitive” notation because we need to write
formulæ that take sums over four-vector compo-
nents. These formulæ can be written much more
elegantly if the components are labeled by an
integer subscript or superscript. Following es-
tablished convention, we will use superscripts to
denote the components of standard (“contravari-
ant”) four-vectors.

Conventionally, a three-vector has components
labeled by integer indices running from 1 to 3;
when such indices are exhibited symbolically,
italic letters are used. For example, the three-
vector �W , where W is a randomly chosen letter
having no specific meaning, up to now has been
denoted by �W ≡ (Wx,Wy,Wz). However, in our
new covariant notation, �W is denoted by

�W ≡ (W 1,W 2,W 3) .

Its magnitude2 is denoted by

| �W |2 ≡ �W · �W
= W 1W 1 +W 2W 2 +W 3W 3

=
3∑

i=1

W iW i

≡ W iW i .

Note that the dot product of �W with itself is now
easily expressed as a sum over the integer index
i. In the last line, we have made use of an addi-
tional convention: repeated indices are summed
over their natural range, in this case 1 to 3.

By the same convention, a four-vector has com-
ponents labeled by integer indices running from
0 to 3; when such indices are exhibited symboli-
cally, Greek letters are used. For example, in co-
variant notation, the four-vectorW is denoted by

W ≡ (W 0,W 1,W 2,W 3) .

An individual component of W is denoted, for
example, by Wµ, where µ can take on the values
0, 1, 2, or 3. Its magnitude2 is denoted by

W ·W = W 0W 0 −W 1W 1 −W 2W 2 −W 3W 3 .

[Now, it may be the case that the 0th compo-
nent of a four-vector would more intuitively be
denoted by a different symbol; for example, call-
ing the spacetime four-vector x, it would more
natural to write ct rather than x0 as its 0th

component. Nevertheless, to take advantage of
covariant notation, we must write the 0th com-
ponent of x as x0 and we must remember that it
is equivalent to ct.]
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A four-tensor has components labeled by two
Greek indices. For example, one of the sixteen
components of the four-tensor W is denoted by
Wµν , where µ and ν independently take on in-
teger values ranging from 0 to 3. When W is
written as a 4× 4 matrix, its first index µ is the
row index; ν is the column index.

21. Transformations in covariant
notation

First we consider 3D spatial rotations. Denote
by xi the ith component of the position vector
�x, and denote by λi

j the component in the ith

row and jth column of the 3×3 submatrix of ΛR

[defined after Eq. (21)]. The real 3D rotation
matrix λ must be orthogonal (λt = λ−1) and,
if the rotation is proper, λ must be obtainable
as the result of multiplying the identity matrix
by an infinite number of matrix operators corre-
sponding to infinitesimal rotations; this requires
detλ = +1. For example, if λ represents a pas-
sive rotation by counterclockwise angle φ about
the z axis, as in Eq. (9),

λ =


 cosφ sinφ 0

− sinφ cosφ 0
0 0 1


 .

The components of �x ′, the vector as it appears
in the rotated coordinate system S ′, are given by

(x′)i = λi
jx

j . (50)

In covariant notation, this is the 3D analog of
Eq. (9).

Denote by T ij the element in the ith row and jth

column of a three-tensor (for example, a rigid
body’s inertia tensor). Under the passive rota-
tion λ, the components of T ′, the tensor as it
appears in S ′, are given by

(T ′)ij = λi
kλ

j
lT

kl . (51)

More precisely, the fact that T transforms ac-
cording to Eq. (51) defines it to be a three-tensor.

Now we graduate to 4D spacetime (Lorentz)
transformations. Denote by xµ the µth com-
ponent of the spacetime vector x, and denote

by Λµ
ν the component in the µth row and νth

column of the Lorentz transformation matrix Λ
[cf. Eqs. (19) and (20)]. Λ is a real symmetric
4 × 4 matrix with unit determinant; it satisfies
the condition Λ(�β0) = Λ−1(−�β0). The compo-
nents of x′, the spacetime vector as it appears in
the moving coordinate system S ′, are given by

(x′)µ = Λµ
νx

ν . (52)

In covariant notation, this is the analog of
Eq. (20).

Denote by Fµν the element in the µth row and
νth column of a Lorentz four-tensor (examples to
follow). Under the Lorentz tranformation Λ, the
components of F ′, the four-tensor as it appears
in S ′, are given similarly by

(F ′)µν = Λµ
ρΛ

ν
σF

ρσ . (53)

Note that the rhs of this equation has 16 terms.

22. Metric tensor

What’s required in order to write dot prod-
ucts in covariant notation? In analogy to the
three-vector dot product, �x · �x = xixi, näıvely
we might write the four-vector dot product as
x ·x = xµxµ. But this would make all four terms
positive, while we know that the last three must
be negative. To remedy this error we introduce
the metric tensor g, where

g =



1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




with elements denoted by gµν . Using g we can
write

x · x = xµgµνx
ν . (54)

In covariant notation, this is the analog of
Eq. (2). Note that (like Λ) the metric ten-
sor is not itself a Lorentz four-tensor; g retains
the same elements in any Lorentz frame. The
metric tensor is the gateway to general relativ-
ity; in curved spacetime its off-diagonal elements
no longer vanish.
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In 3D, the dot product of a three-tensor T and
a three-vector �a is another three-vector �b:

T · �a = �b

T ijaj = bi .
(55)

Likewise, in 4D, the dot product of a Lorentz
four-tensor F and a four-vector a is another
four-vector b. Here, as with the dot product of
two four-vectors, we must incorporate the metric
tensor:

F · a = b

Fµνgνρa
ρ = bµ .

(56)

As a rule of thumb in typical formulæ, you can
tell where metric tensor elements are needed
by noting the heights (superscript or subscript)
of the repeated Greek indices that are to be
summed. You keep inserting elements of the
metric tensor until each pair of repeated indices
includes one superscript and one subscript.

23. Covariant vs. contravariant 4-vectors

In the wake of Eqs. (54) and (56), you seem
destined to write lots of gµν ’s in your career.
But you are rescued by the shorthand made pos-
sible by another convention. Considering the
four-vector x, define

xµ ≡ gµνx
ν = xνgνµ . (57)

If xµ is an element of (a, b, c, d), xµ is an el-
ement of (a,−b,−c,−d): the timelike element
is the same, but the spacelike elements differ
by a sign. The four-vector whose components
are xµ is called the covariant form of the (stan-
dardly contravariant) four-vector whose compo-
nents are xµ. Covariant four-vectors Lorentz
transform differently than standard (contravari-
ant) four-vectors:

(x′)µ = xν(Λ−1)νµ . (52a)

This allows xµx
µ to be a Lorentz scalar.

Likewise, considering the four-tensor F , define

Fµ
ν ≡ Fµρgρν

F ν
µ ≡ gµρF

ρν

Fµν ≡ gµρF
ρσgσν .

(58)

If Fµν is an element of




a b c d
e f g h
i j k l
m n o p


 ,

then Fµ
ν , F ν

µ , and Fµν are elements, respec-
tively, of




a −b −c −d
e −f −g −h
i −j −k −l
m −n −o −p


 ,




a b c d
−e −f −g− −h
−i −j −k −l
−m −n −o −p


 ,

and




a −b −c −d
−e f g h
−i j k l
−m n o p


 .

The semi- or fully-covariant forms of four-tensors
likewise Lorentz transform differently from the
standard (fully contravariant) form. For exam-
ple,

(F ′)µν = Fρσ(Λ−1)ρµ(Λ
−1)σν . (53a)

This allows FµνF
µν to be a Lorentz scalar.

Using covariant notation, you can eliminate the
gµν ’s from your equations by changing the ap-
propriate indices from superscripts to subscripts.
Again, pairs of repeated indices that are to be
summed should consist of one superscript and
one subscript.

Taking advantage of this covariant shorthand,
Eqs. (54) and (56) simplify to

x · x = xµx
µ (54′)

Fµνaν or Fµ
νa

ν = bµ . (56′)

24. Manifestly covariant equations

Before introducing more new formalism, let’s
step back and exploit what we’ve learned to
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rewrite some of the fundamental equations of
physics in manifestly covariant form. Now, if
any equation is correct, the Lorentz transforma-
tion properties of the left-hand side (lhs) and
rhs must be the same. But when the equation’s
form is manifestly covariant, it’s totally obvious
that the lhs and rhs transform in the same way
– they are obviously both Lorentz scalars, or el-
ements of four-vectors, etc. To the eye of the
relativistically oriented physicist, equations are
most elegant when written in manifestly covari-
ant form.

We’ll start by rewriting equations that have al-
ready appeared in these notes.

Definition of four-momentum:

pµ ≡ dxµ

dτ
(25′)

Definition of the contravariant derivative. . .

∂µ ≡ ∂

∂xµ
(32′)

. . . and of the covariant derivative:

∂µ ≡ ∂

∂xµ
(59)

Charge conservation (continuity equation):

∂µJ
µ = 0 (34′)

Lorentz gauge condition:

∂µA
µ = 0 (38′)

Sourceful Maxwell equations in Lorentz gauge:

(∂µ∂
µ)Aν = µ0J

ν (41′)

We add the generalized de Broglie relation:

pµ = h̄kµ (60)

Note that this relation includes not only the
usual λ = h/|�p| but also Planck’s relation E =
hν.

25. Manifestly covariant Maxwell’s
equations

On the mit campus in the 1960’s, during the
Sputnik-induced us science boom, students wore
tee shirts festooned with Maxwell’s equations.
Very temporarily embracing that fashion sense,
today we ask what the least inelegant such tee
shirt might have read.

Surely the freshman version

∮
�B · d�a = 0

E = −dΦB

dt(E ≡
∮
�E · d�9)

(
ΦB ≡

∫
�B · d�a)

∮
ε0 �E · d�a = Q

(
Q ≡

∮
ρ dτ

)
∮

1
µ0

�B · d�9 = I + Id

(
I ≡

∫
�J · d�a)

(
Id ≡

∫
ε0 �E · d�a)

wins no prize. (Note that we have separated the
first two sourceless equations from the last two
“sourceful” ones.)

The sophomore version of Maxwell’s equations
is slightly less geeky:

∇ · �B = 0

∇× �E = − ∂

∂t
�B

∇ · ε0 �E = ρ

∇× 1
µ0

�B = �J +
∂

∂t
ε0 �E .

The junior version takes advantage of the scalar
and vector em potentials; thanks to Eqs. (36)
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and (37), the sourceless Maxwell equations are
satisfied automatically. We are left with

(∂µ∂
µ)Aν = µ0J

ν(
∂µA

µ = 0
)
,

where the second equation reminds us that the
first is valid only if the Lorentz gauge condi-
tion is imposed. These equations are manifestly
covarant; the tee shirt sporting them is an im-
proved fashion statement.

Can the mit “tech tool” do better? If he is to
write only one equation, it must be valid for any
choice of em gauge. Define the field strength
tensor

Fµν ≡ ∂µAν − ∂νAµ . (61)

Because it is constructed out of two four-vectors,
F must transform according to Eq. (53); there-
fore it is a Lorentz four-tensor. Because it is anti-
symmetric, F has only six independent elements;
it is straightforward to show that they are pro-
portional to the three components of �E/c and �B:

F =




0 −E1/c −E2/c −E3/c
E1/c 0 −B3 B2

E2/c B3 0 −B1

E3/c −B2 B1 0


 (62)

The covariant four-derivative ∂µ, when it oper-
ates on Fµν , must yield a four-vector; this is
nothing more than µ0 × the four-current-density
Jν . So the winning tee shirt proclaims

∂µF
µν = µ0J

ν . (63)

Explicitly or implicitly, Eq. (63) includes the in-
formation in all four of Maxwell’s equations, and
it is valid in any em gauge.

26. Lorentz transformation of EM fields

Equations (42) gave a prescription for Lorentz
transforming the em fields �E and �B; it was
claimed that this prescription follows from the
rules for transforming the em four-potential Aµ

“after some algebra”. Just what is this algebra?

The most straightforward derivation of Eqs. (42)
begins with the field strength tensor Fµν and

the rule (Eq. (53)) for transforming it. Using
this approach, the algebra is manageable.

After Eq. (53a) we stated that FµνF
µν , where

F is any Lorentz four-tensor, is a Lorentz scalar.
(This is true also for FµνG

µν , where F and G
are any two Lorentz four-tensors.) When F is
the field strength tensor, to what is the Lorentz
scalar FµνF

µν equal? It is easy to show that

FµνF
µν = − 2

c2 (| �E|2 − |c �B|2) .

Therefore | �E|2 −|c �B|2 has the same value in any
Lorentz frame. [With less elegance this can be
deduced directly from Eqs. (42).]

Can we form a second Lorentz scalar from �E
and �B? Our approach is first to identify another
Lorentz four-tensor G whose elements are func-
tions only of �E and �B, and then to examine the
Lorentz scalars GµνG

µν and FµνG
µν .

The dual field strength tensor G is defined by

Gµν ≡ 1
2ε

µνρσFρσ , (64)

where εµνρσ ≡ 1 (−1) when µνρσ is an even
(odd) permutation of 0123, and 0 otherwise. G
is a Lorentz four-tensor, while g is a fourth-rank
four-tensor whose elements retain the same val-
ues in any Lorentz frame. It is straightforward
to evaluate

G =




0 −B1 −B2 −B3

B1 0 E3/c −E2/c
B2 −E3/c 0 E1/c
B3 E2/c −E1/c 0


 (65)

Notice that G is obtained from the standard
field strength tensor F by changing �E/c → �B

and �B → − �E/c.

Unfortunately, GµνG
µν yields no new Lorentz

scalar; again it is proportional to | �E|2 − |c �B|2.
However, FµνG

µν is easily shown to be propor-
tional to �E · �B. Therefore �E · �B is our second
Lorentz scalar. Again, this may be deduced less
elegantly from Eqs. (42).

We collect a bonus from introducing the dual
field strength tensor. Earlier, we remarked that
the sourceless Maxwell equations are implicit in
the definition of the em four-potential Aµ. But
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if you insist on an explicit, manifestly covariant
statement of these two equations, it is simply

∂µG
µν = 0 . (66)

Perhaps Eq. (66) should be added to Eq. (63) on
the winning tee shirt.

27. Motion of a charged particle in
uniform static EM fields

Under the influence of an em field, a point parti-
cle of charge e and rest mass m moves according
to the Lorentz force law:

d�p

dt
= e( �E + �β × c �B) , (67)

where �p is the relativistically correct momen-
tum, i.e. the spacelike component of the energy-
momentum four-vector:

�p ≡ γ�βmc ,

γ ≡ 1√
1− |�β|2

, (68)

with �βc denoting the particle’s velocity.

(Case I) In a uniform static magnetic field �B0,
with �E = 0, a straightforward consequence of
Eq. (67) is that the particle executes helical
motion about B̂0 with angular frequency

ωcyc =
e| �B0|
γm

, (69)

where |�β| and γ do not vary. For a nonrelativis-
tic proton with γ = 1, the cyclotron frequency
ωcyc = 95.6 MHz/Tesla. The radius of the helix
is

R =
|�p⊥|
e| �B0|

,

where �p⊥ is the particle’s momentum transverse
to B̂0 (again |�p⊥| does not vary).
(Case II) Conversely, when the particle moves in
a uniform static electric field �E0, with �B = 0, the
component p‖ = γβ‖mc of its momentum paral-
lel to Ê0 changes linearly with time according to

dp‖
dt

=
e| �E0|
m

,

while �p⊥ remains fixed. The particle’s trajec-
tory is a hyperbola (which approaches the usual
parabola in the nonrelativistic limit β � 1).

(Case III) When both �B0 and �E0 are nonzero,
the motion can be complicated. However, case
III can be reduced to the simpler cases I or II if
the problem can be worked in a Lorentz frame
S ′ in which either �E′

0 or �B′
0 vanish. Can such a

frame be found?

Here’s where the Lorentz invariants �E · �B and
| �E|2−|c �B|2 have practical impact. Unless �E0 · �B0

= 0 in the problem as originally posed, �E′
0 · �B′

0

will be nonzero in any S ′, which will force both
�E′

0 and �B′
0 not to vanish. So one of the fields

can be transformed away only if �E0 ⊥ �B0.

In S ′, which field can be eliminated? If | �E0|2 −
|c �B0|2) < 0, �B′

0 will survive, and case I will ob-
tain. If | �E0|2 − |c �B0|2) > 0, �E′

0 will survive,
yielding case II. If | �E0|2 = |c �B0|2, a frame does
exist in which both fields vanish, but it can-
not be reached by a Lorentz transformation with
finite boost.

More reading
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Griffiths, Introduction to Electrodynamics, 3rd
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